BÀI1: Cho $x,y>0$ và $ x+y \ge4$. TÌM GTNN của $P=\frac{3x^2+4}{4x} + \frac{2+y^3}{y^2}$
BÀI2: Cho $x\ge2$, $y\ge3$,$z\ge4$ Tìm gtln của $P= \frac{xy\sqrt{z-4} + yz\sqrt{x-2} + xz\sqrt{y-3}}{xyz}$
BÀI 3: CHO $x,y,z>0$ và $x+y+z=1$ tìm gtln của $P= \sqrt{1-x}+\sqrt{1-y}+\sqrt{1-z}$
BÀI 4: cho $x,y,z>0$ và $x+y+z=\frac 34$ tìm gtln của $P= \sqrt[3]{x+3y}+ \sqrt[3]{y+3z}+ \sqrt[3]{z+3x}$