Từ giả thiết ta có:28(1a2+1b2+1c2)=4(1ab+1bc+1ca)+2013≤4(1a2+1b2+1c2)+2013
⇒1a2+1b2+1c2≤6718
Ta có:
1√5a2+2ab+b2=8√3√671√15a2+2ab+b2.671192
≤4√3√671(15a2+2ab+b2+671192)
≤4√3√671[164(5a2+2ab+1b2)+671192]
=√316√671(5a2+2ab+1b2)+√67116√3
Tương tự: 1√5b2+2bc+c2≤√316√671(5b2+2bc+1c2)+√67116√3
1√5c2+2ca+a2≤√316√671(5c2+2ca+1a2)+√67116√3
Cộng các BĐT trên ta được:
P≤6√316√671(1a2+1b2+1c2)+2√316√671(1ab+1bc+1ca)+3√67116√3
≤√32√671(1a2+1b2+1c2)+√201316≤√20138
Vậy maxP=√20138⇔a=b=c=2√6√671