Ta có: c2a2+c2b2=12;ac=x;bc=y⇒1x2+1y2=12⇒1≥(1x+1y)2⇔xy≥x+y
P=xy+1+yx+1+1√x2+y2+1
Chứng minh: x2+y2+1≤(x+y−1)2⇔2xy−2x−2y≥0⇔xy≥x+y(dung)
suy ra: P≥xy+1+yx+1+1x+y−1≥(x+y)22xy+x+y+1x+y−1≥(x+y)2x+y+(x+y)22+1x+y−1=2(x+y)x+y+2+1x+y−1=2aa+2+1a−1=A
Lại có; A=2aa+2+1a−1=2a2−2a+a+2(a−1)(a+2)=2a2−a+2a2+a−2⇔a2(A−2)+a(A+1)−2A−2=0;Δ=A2+2A+1+4(A−2)(2A+2)≥0⇔A≥53
Dấu = xảy ra khi ⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩1x2+1y2=12xy+1=yx+1x+y=xya=x+y=4⇔{c=2ac=2b