x2−(x−1)x+√x−1+y2−(y−2)y+√y−2+z2−(z−3)z+√z−3)=12⇔x−√x−1+y−√y−2+z−√z−3=12⇔x+y+z−12=√x−1+√y−2+√z−3(⋆)Đặt t=x+y+z(t≥12)
Từ (⋆)⇒t−12≤√3(t−6)⇔6≤t≤18⇒maxt≥12t=18
Từ (⋆)⇒(t−12)2=t−6+2(√(x−1)(y−2)+√(y−2)(z−3)+√(z−3)(x−1)
≥t−6⇔t2−24t+144≥t−6⇔[t≥15t≤10⇒mint≥12t=15
KL:GTLN=18⇔(x,y,z)=(5,6,7)
GTNN=15⇔(x,y,z)={(1;2;12);(1,11,3);(10,2,3)}