đánh giá đại diện..:$\frac{1}{2(b+c-1)+a+d}=\frac{1}{(a+b)+(c+d)+(b+c)-2}\leq \frac{1}{2}.\frac{1}{\sqrt{ab}+\sqrt{cd}+\sqrt{bc}-1}$
$\leq \frac{1}{2}.\frac{1}{2\sqrt[4]{abcd}+\sqrt{bc}-1}=\frac{1}{2}.\frac{1}{\sqrt{bc}+1}$
tương tự, cộng lại ta đc:
$VT\leq \frac{1}{2}(\frac{1}{\sqrt{ab}+1}+\frac{1}{\sqrt{cd}+1}+\frac{1}{\sqrt{bc}+1}+\frac{1}{\sqrt{da}+1})$
$=\frac{1}{2}(\frac{1}{\sqrt{ab}+1}+\frac{\sqrt{ab}}{\sqrt{ab}+1}+\frac{1}{\sqrt{cd}+1}+\frac{\sqrt{cd}}{\sqrt{cd}+1})$
$=1$
suy ra dpcm