9
phiếu
1đáp án
1K lượt xem

Bất Đẳng Thức hay

Cho $1\leq x,y,z \leq 2$Tìm min P= $ \frac{(x+y)^2}{2(x+y+z)^2-2(x^2+y^2)-z^2} $
14
phiếu
1đáp án
2K lượt xem

Present for Vy (not for some Gods)

1.Cho các số thực a,b,c thỏa mãn $a+b+c=0$.Cm:$ab+2bc+3ca\leq 0$.2.Cho 4 số dương a,b,c,d .Cm:$\sqrt{ab}+\sqrt{cd}\leq \sqrt{(a+d)(b+c)}$ .3.Cho...
15
phiếu
1đáp án
2K lượt xem

Tiếp nha!!!

Cho $x,y,z>0$ và $x^{2}+y^{2}+z^{2}=2$ Tìm $Max$M=$\frac{x^{2}}{x^{2}+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}$
8
phiếu
1đáp án
1K lượt xem

nhờ mn thông não giúp ^.^

Cho 3 số thực $x,y,z$ đôi một khác nhau thuộc đoạn $[-1;1]$. tìm GTNN của biểu thức $Q=\frac{4}{(x-y)^2} + \frac{4}{(y-z)^2}+ \frac{4}{(z-x)^2}$
4
phiếu
4đáp án
7K lượt xem

Bài 7: CMR: a = b = c nếu có 1 trong các điều kiện sau:1/ a2 + b2 + c2 = ab + bc + ca.2/ (a + b + c)2 = 3(a2 + b2 + c2)3/ (a + b + c)2 = 3 (ab + bc + ca).

Chứng minh rằng $a=b=c$ nếu có 1 trong các điều kiện sau1.$a^2+b^2+c^2=ab+bc+ca$2.$(a+b+c)^2=3(a^2+b^2+c^2)$3.$(a+b+c)^2=3(ab+bc+ca)$
8
phiếu
1đáp án
2K lượt xem

Toán 9, mọi người giúp mình với!

Cho x,y,z >0Chứng minh: $\frac{xy}{x^{2}+yz+zx}+\frac{yz}{y^{2}+zx+xy}+\frac{zx}{z^{2}+xy+yz}\leq \frac{x^{2}+y^{2}+z^{2}}{xy+yz+zx}$
12
phiếu
2đáp án
2K lượt xem

bất đẳng thức 4

Cho a,b,,c là các số thực dương thoả mãn $a^{2}+b^{2}+c^{2}=1$. Chứng minh : $\frac{a^{2}+ab+1}{\sqrt{a^{2}+3ab+c^{2}}}+\frac{b^{2}+bc +1}{\sqrt{b^{2}+3bc+a^{2}}}+\frac{c^{2}+ca+1}{\sqrt{c^{2}+3ca+b^{2}}}\geq \sqrt{5}(a+b+c)$
8
phiếu
1đáp án
935 lượt xem

bất đẳng thức 3

Cho x,y,z là các số thực dương . Chứng minh rằng : $\frac{2x^{2}+xy}{(y+\sqrt{xz}+z)^{2}}+\frac{2y^{2}+yz}{(z+\sqrt{xy}+x)^{2}}+\frac{2z^{2}+zx}{(x+\sqrt{yz}+y)^{2}}\geq 1$
11
phiếu
2đáp án
1K lượt xem

bất đẳng thức 2

Cho x,y,z là các số dương thoả mãn xyz=1.Tìm GTNN của biểu thức : $P=\frac{x^{2}(y+z)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^{2}(z+x)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^{2}(x+y)}{x\sqrt{x}+2y\sqrt{y}}$
11
phiếu
1đáp án
1K lượt xem

bất đẳng thức 1

Cho x,y,z là các số thực dương . Tìm GTNN của biểu thức : $P= \frac{x^{2}}{z(z^{2}+x^{2})}+\frac{y^{2}}{x(x^{2}+y^{2})}+\frac{z^{2}}{y(y^{2}+z^{2})}+2(x^{2}+y^{2}+x^{2})$
8
phiếu
1đáp án
1K lượt xem

chứng minh bất đẳng thức sau

Cho a,b,c,d là các số thực dương thoả mãn abcd = 1.Chứng minh : $\frac{1}{2(a+b-1)+c+d}+\frac{1}{2(b+c-1)+d+a}+\frac{1}{2(c+d-1)+a+b}+\frac{1}{2(d+a-1)+b+c}\leq 1$
11
phiếu
0đáp án
866 lượt xem

First!!! Dễ thui nha

Cho $a,b,c>0$ và $a+b+c+\sqrt{2abc}\geq 10$ .CMR $ \sum\sqrt{\frac{8}{a^{2}}+\frac{9b^{2}}{2}+\frac{c^{2}a^{2}}{4}} \geq 6\sqrt{6}$
12
phiếu
0đáp án
833 lượt xem

Continue:))

Cho$a,b,c$ là các số thực không âm thỏa mãn $\begin{cases}a\geq 7.max(b,c)\\ a+b+c=1 \end{cases}$Tìm $Min$:$P=a(b-c)^{5}+b(c-a)^{5}+c(a-b)^{5}$
9
phiếu
0đáp án
831 lượt xem

Cho $a,b,c$ là độ dài ba cạnh tam giác. Chứng minh rằng: $3(\sum \frac{a^2}{b^2})\ge (\sum a^2)(\sum \frac{1}{a^2})$

Cho $a,b,c$ là độ dài ba cạnh tam giác. Chứng minh rằng:$3(\sum \frac{a^2}{b^2})\ge (\sum a^2)(\sum \frac{1}{a^2})$
5
phiếu
0đáp án
709 lượt xem

Bất đẳng thức

Cho các số thực $x,y,z$ thỏa $x+y+z=0$. Tìm giá trị nhỏ nhất của biểu thức :$A=10^{|2x-y|}+10^{|2y-z|}+10^{|2z-x|}-ln(\sqrt{14(x^2+y^2+z^2)}+1)$
7
phiếu
1đáp án
2K lượt xem

Cho các số thực $x,y,z$ thỏa mãn $x+y+z=1$. Chứng minh rằng: $44(xy+yz+zx)\le (3x+4y+5z)^2$

Cho các số thực $x,y,z$ thỏa mãn $x+y+z=1$. Chứng minh rằng: $44(xy+yz+zx)\le (3x+4y+5z)^2$
10
phiếu
0đáp án
782 lượt xem

help

Cho a,b,c là các số thực dương thỏa mãn $ab+bc+ca=1$.Tìm GTLN của$A=\frac{a}{b^{2}+c^{2}+2}+\frac{b}{c^{2}+a^{2}+2}+\frac{c}{a^{2}+b^{2}+2}$
5
phiếu
1đáp án
1K lượt xem

Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=\frac{9}{4}$. Tìm GTLN của biểu thức: $S=(a+\sqrt{a^2+1})^b(b+\sqrt{b^2+1})^c(c+\sqrt{c^2+1})^a$

Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=\frac{9}{4}$. Tìm GTLN của biểu thức:$S=(a+\sqrt{a^2+1})^b(b+\sqrt{b^2+1})^c(c+\sqrt{c^2+1})^a$
6
phiếu
1đáp án
1K lượt xem

Ahihi ...BẤT ĐẲNG THỨC !!!!!!!

Cho a,b,c dương .CMR $\frac{a^{3}}{a^{2}+ab+b^{2}}$+$\frac{b^{3}}{b^{2}+bc+c^{2}}$+$\frac{c^{3}}{c^{2}+ca+a^{2}}$$\geq$$\frac{a+b+c}{3}$
3
phiếu
1đáp án
1K lượt xem

Bất đẳng thức

Cho 3 số a,b,c> 0 thỏa mãn: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4$Tìm min M=$\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}$
10
phiếu
1đáp án
1K lượt xem

Cho $a,b,c>0$ thỏa mãn: $a+b+c=3$. Tìm MIN: $\sum \frac{ab}{c}+\frac{9abc}{4}$

Cho $a,b,c>0$ thỏa mãn: $a+b+c=3$. Tìm MIN:$\sum \frac{ab}{c}+\frac{9abc}{4}$
9
phiếu
0đáp án
904 lượt xem

(9)

Cho các số thực không âm $x,y,z$ thỏa mãn $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac 94$. Tìm $\max F$$$F=\sqrt[3]{(x^2-1)^2}+\sqrt[3]{(y^2-1)^2}+\sqrt[3]{(z^2-1)^2}$$
14
phiếu
1đáp án
1K lượt xem

bất đẳng thức nè

Cho $a,b \in (0,1)$ thỏa mãn $(a^{3}+b^{3})(a+b)-ab(a-1)(b-1)=0$ .Tìm GTLN của biểu thức : ...
6
phiếu
0đáp án
1K lượt xem

Cho $a,b,c$ là các số thực dương thỏa mãn $a+b+c=3$. Chứng minh rằng: $(a+b^2)(b+c^2)(c+a^2)\le 13+abc$

Cho $a,b,c$ là các số thực dương thỏa mãn $a+b+c=3$. Chứng minh rằng:$(a+b^2)(b+c^2)(c+a^2)\le 13+abc$
9
phiếu
2đáp án
2K lượt xem

Cho các số thực không âm thỏa mãn: $x^2+y^2+xy+2=3(x+y)$. Tìm GTLN của: $P=\frac{3x+2y+1}{x+y+6}$

Cho các số thực không âm thỏa mãn: $x^2+y^2+xy+2=3(x+y)$. Tìm GTLN của:$P=\frac{3x+2y+1}{x+y+6}$
7
phiếu
1đáp án
1K lượt xem

BĐT

Cho 3 số thực dương thỏa mãn $x^{2}+y^{2}+z^{2}=1$. Tìm Min:$S=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}$
8
phiếu
1đáp án
1K lượt xem

bất đẳng thức hay 2

Chứng minh các bất đẳng thức sau: ...
9
phiếu
1đáp án
1K lượt xem

bất đẳng thức hay

Cho a,b,c là các số thực dương.Tìm giá trị nhỏ nhất của biểu thức sau: ...
5
phiếu
1đáp án
1K lượt xem

Giá trị nhỏ nhất của biểu thức

Cho các số thực a,b thỏa mãn $ a,b \epsilon [\frac{1}{2};1]$. Tìm giá trị nhỏ nhất của biểu thức:P=$a^5b +ab^5+ \frac{6}{a^2+b^2} -3(a+b)$
12
phiếu
0đáp án
1K lượt xem

Kỉ niệm ngày 3 ngón tay đội nón trắng xếp hàng =="

Chứng minh rằng: $\sqrt{n^2-1^2}+\sqrt{n^2-2^2}+........+\sqrt{n^2-(n-1)^2}<\frac{\pi }{4}n^2 $ hoặc: Chứng minh rằng: ...
12
phiếu
2đáp án
2K lượt xem

Cmr: $\color{red}{\sum \frac{xy}{x^2+yz+zx}\le \frac{\sum x^2}{\sum xy}}$

Cmr: $\sum \frac{xy}{x^2+yz+zx}\le \frac{\sum x^2}{\sum xy}$
10
phiếu
1đáp án
1K lượt xem

bất đẳng thức hay

Cho $x\geq y\geq z\geq 0$ và không có hai số nào đồng thời bằng 0 .Tìm giá trị nhỏ nhất của biểu thức : ...
14
phiếu
1đáp án
2K lượt xem

$\color{red}{(8)}$

Cho $x \ge y \ge z \ge 0,x+y+z=6$.Chứng minh :$$\frac{1}{x^2+6}+\frac{1}{y^2+6}+\frac{1}{z^2+6} \ge \frac 3{10}$$
7
phiếu
1đáp án
1K lượt xem

Cho $\color{red}{0\leq a\leq b\leq c\leq 1}$

Tìm $Max$ của biểu thức: $A=a^{2}(b-c)+b^{2}(c-b)+c^{2}(1-c)$
11
phiếu
2đáp án
1K lượt xem

Cho $\color{red}{a,b,c>0; a+b+c=1}$

Chứng minh : $\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\geq 7$
11
phiếu
2đáp án
2K lượt xem

Đại số 9

cho các số thực $a,b,c$ t/m: $0\leq a,b,c\leq1; a+b+c\geq2$. c/m: $ab(a+1)+bc(b+1)+ca(c+1)\geq2$
9
phiếu
3đáp án
2K lượt xem

Oe..Oe... ( đề dành cho tuộc) =,,= ( không làm xử tại chỗ)=,,=

Cho $a,b,c$ là các số thực dương thỏa mãn $a+b+c=3$. Tính $Max$ của $P$: $P=\frac{2}{3+ab+bc+ca}+\sqrt[3]{\frac{abc}{(1+a)(1+b)(1+c)}}$.
12
phiếu
1đáp án
1K lượt xem

đề toán chuyên Lam Sơn

cho $x,y,z>0; x+y+z\leq \frac{3}{2}$. tìm gtnn của: $P=\frac{x(yz+1)^2}{z^2(xz+1)}+\frac{y(xz+1)^2}{x^2(xy+1)}+\frac{z(xy+1)^2}{y^2(yz+1)}$
8
phiếu
1đáp án
1K lượt xem

Giải bằng tất cả các cách (trừ cách đáp án ghi).THANKS !!!

BÀI 4B:http://tin.tuyensinh247.com/dap-an-de-thi-vao-lop-10-mon-toan-hai-phong-nam-2016-c29a28689.html
11
phiếu
1đáp án
1K lượt xem

Cho $\color{red}{\begin{cases}a,b,c>0 \\ abc=1 \end{cases}}$

Chứng minh : $\sum \frac{1}{1+a+b^{2}} \leq 1$
4
phiếu
1đáp án
1K lượt xem

help

cho $a,b,c >0$ và $abc=1 $chứng minh$\sum \frac{1}{1+a+a^2} \geq 1$bài gốc nó đây :cho$ x,y,z >0$chứng minh : $\sum \frac{x^2}{x^2+xy+y^2} \geq 1$
11
phiếu
7đáp án
6K lượt xem

help với

1/ 2/3/4/5/6/7/cho 3 số dương thõa mãn a +b +c+ ab +ac + bc = 6abcCM: 8/9/cho x y z là ba số thực dương thõa mãn x+y+z = 1 . GTLN 10/cho 2 số...
11
phiếu
0đáp án
2K lượt xem

Cấu trúc đề thi VUI GIẢI TOÁN cho cấp THCS

Cấu trúc đề thi VUI GIẢI TOÁN dành cho cấp THCSSau một thời gian bàn bạc và thảo luận BTC...
10
phiếu
1đáp án
1K lượt xem

Cho $x,y,z$ là các số thực dương. Cmr: $\sum \frac{x}{x+\sqrt{(x+y)(x+xz)}}\le 1$

Cho $x,y,z$ là các số thực dương. Cmr:$\sum \frac{x}{x+\sqrt{(x+y)(x+xz)}}\le 1$
5
phiếu
1đáp án
1K lượt xem

Giải cho vui .

1,Cho số thực $x ,y$ thoả mãn $x\geq $y$\geq $1 Chứng minh bất đẳng...
12
phiếu
1đáp án
2K lượt xem

(7)

Cho $x,y,z>0$ thõa mản $x+y+z=3$. Chứng minh :$$P=\frac{1}{x+x^8}+\frac{1}{y+y^8}+\frac{1}{z+z^8} \ge \frac 32$$
8
phiếu
1đáp án
1K lượt xem

Cho $x,y$ thỏa mãn: $14xy+23x^2-25y^2-24=0$. Chứng minh rằng:$x^2+y^2\ge 1$

Cho $x,y$ thỏa mãn: $14xy+23x^2-25y^2-24=0$. Chứng minh rằng:$x^2+y^2\ge 1$
3
phiếu
0đáp án
539 lượt xem

tìm giá trị lớn nhất của biểu thức

cho ba số thực không âm x,y,z.Tìm giá trị lớn nhất của biểu...
9
phiếu
0đáp án
1K lượt xem

Trang trước1...678910...45Trang sau 153050mỗi trang
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376