|
Ta có: $ \begin{array}{l} 5{x^2} + 8xy + 5{y^2} = 36 \Leftrightarrow \left( {{x^2} + {y^2}} \right) + 4\left( {x + y} \right) = 36 \Leftrightarrow S = 36 - 4{\left( {x + y} \right)^2}\\ \Rightarrow S \le 36 \end{array} $ Dấu “=” xảy ra $ \Leftrightarrow \left\{ \begin{array}{l} x + y = 0\\ 5{x^2} + 8xy + 5{y^2} = 36 \end{array} \right. $ $ \begin{array}{l} \Leftrightarrow x = 3\sqrt 2 ,y = - 3\sqrt 2 \,\,\,V\,\,\,x = - 3\sqrt 2 ,y = 3\sqrt 2 . \Rightarrow \max \,S = 36 \end{array} $ Mặt khác, ta có thể viết: $ \begin{array}{l} 5{x^2} + 8xy + {y^2} = 36 \Leftrightarrow 9\left( {{x^2} + {y^2}} \right) - 4{\left( {x - y} \right)^2} = 36 \Leftrightarrow 9S = 36 + 4{\left( {x - y} \right)^2}\\ \Rightarrow 9S \ge 36\\ \Rightarrow S \ge 4 \end{array} $ Dấu “=” xảy ra $ \Leftrightarrow \left\{ \begin{array}{l} x - y = 0\\ 5{x^2} + 8xy + 5{y^2} = 36 \end{array} \right. $ $ \begin{array}{l} \Leftrightarrow x = y = \sqrt 2 \ \Rightarrow \min \,\,S = \sqrt 4 \end{array} $ Vậy ta có: $ \left[ \begin{array}{l} \max\,S = 36\\ \min \,S = 4 \end{array} \right. $
|