CÁC DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN KHÁC


Tiếp chuyên đề: "Phương trình nghiệm nguyên dạng đa thức"

Các dạng phương trình nghiệm nguyên khác:
1. Phương trình dạng phân thức
2. Phương trình mũ
3. Phương trình vô tỉ
4. Hệ phương trình nghiệm nguyên
5. Điều kiện để phương trình có nghiệm nguyên

1. Phương trình dạng phân thức
Ví dụ 1:

Tìm các nghiệm nguyên dương của phương trình:
               $\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}$
Giải:
Nhân hai vế của phương trình với 6xy:
                   $6y + 6x + 1 = xy$
Đưa về phương trình ước số:
      $x(y - 6) - 6(y - 6) = 37$
$ \Leftrightarrow (x - 6)(y - 6) = 37$
Do vai trò bình đẳng của $x$ và $y$, giả sử $x \geqslant y \geqslant 1$, thế thì $x - 6 \geqslant y - 6 \geqslant  - 5$.
Chỉ có một trường hợp:
               $\left\{ \begin{array}
  x - 6 = 37  \\
  y - 6 = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  x = 43  \\
  y = 7  \\
\end{array}  \right.$
Đáp số:  $(43 ; 7), (7 ; 43)$

Ví dụ 2:
Tìm các số nguyên $x$ sao cho $\frac{{x - 17}}{{x - 9}}$ là bình phương của một phân số
Giải:
Giải sử $\frac{{x - 17}}{{x - 9}} = {\left( {\frac{a}{b}} \right)^2}$ với $a \in \mathbb{N},b \in {\mathbb{N}^*}$.
Xét $a = 0$ thì $x = 17$
Xét $a \ne 0$. Không mất tính tổng quát, giả sử $(a, b) = 1$. Do $({a^2},{b^2}) = 1$ nên:
     $x - 17 = {a^2}k$              (1)
     $x - 9 = {b^2}k$                (2)   $k$ nguyên
Từ (1) và (2) suy ra:
     $(x - 9) - (x - 17) = ({b^2} - {a^2})k$
     $8 = (b + a)(b - a)k$
Ta thấy $b + a$ và $b – a$ là ước của 8. Chú ý rằng $(b + a) – (b – a) = 2^a$ nên $b + a$ và $b – a$ cùng tính chẵn lẻ. Ta lại có $b + a > b – a$ và $b + a > 0$. Có các trường hợp:
$(b+a,b-a)=(4,2),(4,-2),(2,-2)(2,-4)$
$\Rightarrow k\in \{1,-1,-2,-1\} $
$ \Rightarrow b\in\{3,1,0,-1\}$  loại 2 trường hợp 0 và $-1$
$\Rightarrow  x=18$ hoặc $x=8$  
Vậy có ba đáp số:
$x = 17$ thì $\frac{{17 - 17}}{{17 - 9}} = \frac{0}{8} = {0^2}$
$x = 18$ thì $\frac{{18 - 17}}{{18 - 9}} = \frac{1}{9} = {\left( {\frac{1}{3}} \right)^2}$
$x = 8$ thì $\frac{{8 - 17}}{{8 - 9}} = 9 = {3^2}$

2. Phương trình mũ
Ví dụ 3:

Tìm các số tự nhiên x và các số nguyên y sao cho:
                    ${2^x} + 3 = {y^2}$
Giải:
Lần lượt xét các giá trị tự nhiên của $x$:
Nếu $x = 0$ thì ${y^2} = 4$ nên $y = \pm 2$
Nếu $x = 1$ thì ${y^2} = 5$, không có nghiệm nguyên
Nếu $x \geqslant 2$ thì ${2^x} \vdots 4$, do đó vế trái chia cho 4 dư 3, còn $y$ lẻ nên vế phải chia cho 4 dư 1. Mâu thuẫn.
Kết luận: Nghiệm của phương trình là (0 ; 2), (0 ; $ - $2)

Ví dụ 4:
Giải phương trình với nghiệm nguyên dương:
                                 ${2^x} + 57 = {y^2}$            (1)
Giải:
Xét hai trường hợp:
a)    $x$ lẻ. Đặt $x = 2n + 1 (n \in \mathbb{N})$. Ta có:
${2^x} = {2^{2n + 1}} = {2.4^n} = 2{(3 + 1)^n} = 2(BS3 + 1) = BS3 + 2$
Khi đó vế trái của (1) là số chia cho 3 dư 2, còn vế phải là số chính phương chia cho 3 không dư 2, loại.
b)    $x$ chẵn. Đặt $x = 2n $$(n \in {\mathbb{N}^*})$. Ta có:
$\begin{array}
  {y^2} - {2^{2n}} = 57  \\
\Leftrightarrow (y + {2^n})(y - {2^n}) = 3.19  \\
\end{array} $
Ta thấy $y + {2^n}$ > 0 nên $y - {2^n}$ > 0 và $y + {2^n}$ > $y - {2^n}$
Do đó có các trường hợp:
($y + {2^n}$,$y - {2^n}$)$=(57,1),(19,3)$
Nên $(x,y)=(6,11)$  (1 trường hợp bị loại)
Ta có: ${2^6} + 57 = {11^2}$
Kết luận: nghiệm của phương trình là (6 ; 11)

Ví dụ 5:
Giải phương trình với nghiệm tự nhiên:
       ${2^x} + {2^y} + {2^z} = 1024$     (1)     với $x \leqslant y \leqslant z$
Giải:
Chia hai vế của (1) cho ${2^x} \ne 0$ ta được:
       $1 + {2^{y - x}} + {2^{z - x}} = {2^{10 - x}}$                 (2)
Do ${2^{10 - x}}$ > 1 nên ${2^{10 - x}}$ là bội của 2.
Ta lại có $z > x$, vì nếu $z = x$ thì  $x = y = z$, khi đó (2) trở thành $1 + {2^0} + {2^0} = BS2$, loại.
Do đó ${2^{y - x}}$ là bội của 2.
Suy ra $1 + {2^{y - x}}$ là bội của 2. Do đó ${2^{y - x}}$ = 1, vậy y = x.
Thay vào (2):
                       $\begin{array}
  1 + 1 + {2^{z - x}} = {2^{10 - x}}  \\
   \Leftrightarrow 2 + {2^{z - x}} = {2^{10 - x}}  \\
   \Leftrightarrow 2(1 + {2^{z - x - 1}}) = {2^{10 - x}}  \\
   \Leftrightarrow 1 + {2^{z - x - 1}} = {2^{9 - x}}  \\
\end{array} $
Do  ${2^{9 - x}}$ > 1 nên ${2^{9 - x}}$ là bội của 2. Do đó ${2^{z - x - 1}}$ = 1 và 2 = ${2^{9 - x}}$.
Từ đó $x = 8; y = 9; z = 9.$

3. Phương trình vô tỉ
Ví dụ 6:

Tìm các nghiệm nguyên của phương trình:
                        $y = \sqrt {x + 2\sqrt {x - 1} }  + \sqrt {x - 2\sqrt {x - 1} } $
Giải:
Điều kiện: $x \geqslant 1$
$y = \sqrt {(x - 1) + 1 + 2\sqrt {x - 1} }  + \sqrt {(x - 1) + 1 - 2\sqrt {x - 1} } $
   $ = |\sqrt {x - 1}  + 1| + |\sqrt {x - 1}  - 1|$
   $ = \sqrt {x - 1}  + 1 + |\sqrt {x - 1}  - 1|$
Xét hai trường hợp:
a)    Với $x = 1$ thì $y =2.$
b)    Với $x \geqslant 2$ thì $y = \sqrt {x - 1}  + 1 + \sqrt {x - 1}  - 1 = 2\sqrt {x - 1} $
Do đó: ${y^2} = 4(x - 1)$. Do $x \geqslant 2$nên có thể đặt $x – 1$ = ${t^2}$ với $t$ nguyên dương.
Ta có: $\left\{ \begin{array}
  x = {t^2} + 1  \\
  y = 2t  \\
\end{array}  \right.$
Kếtt luận: nghiệm của phương trình là: (1 ; 2), (${t^2} + 1$ ; 2t) với $t$ là số nguyên dương tùy ý.

Ví dụ 7:
Tìm các nghiệm nguyên của phương trình:
             $\sqrt {x + \sqrt {x + \sqrt {x + \sqrt x } } }  = y$
Giải:
Ta có: $x \geqslant 0,y \geqslant 0$
Bình phương hai vế rồi chuyển vế:
$\sqrt {x + \sqrt {x + \sqrt x } }  = {y^2} - x = k(k \in \mathbb{N})$
Bình phương hai vế rồi chuyển vế:
$\sqrt {x + \sqrt x }  = {k^2} - x = m(m \in \mathbb{N})$
Bình phương hai vế:
$x + \sqrt x  = {m^2}$
Ta biết rằng với $x$ nguyên thì $\sqrt x $ hoặc là số nguyên hoặc là số vô tỉ.
Do $x + \sqrt x  = {m^2}$ $(m \in \mathbb{N})$nên $\sqrt x $ không là số vô tỉ. Do đó $\sqrt x $ là số nguyên và là số tự nhiên.
Ta có: $\sqrt x (\sqrt x  + 1) = {m^2}$
Hai số tự nhiên liên tiếp $\sqrt x $ và $\sqrt x  + 1$ có tích là số chính phương nên số nhỏ bằng 0:  $\sqrt x $ = 0
Suy ra: $x = 0; y = 0$ thỏa mãn phương trình đã cho.
Nghiệm của phương trình là $(0 ; 0)$

Ví dụ 8:
Tìm các nghiệm nguyên của phương trình:
                        $\sqrt x  + \sqrt y  = \sqrt {1980} $             (1)
Giải:
                          $\sqrt x  = \sqrt {1980}  - \sqrt y $           (2)
Với điều kiện $0 \leqslant x,y \leqslant 1980$:
$(2) \Leftrightarrow x = 1980 + y - 2\sqrt {1980y} $
     $ \Leftrightarrow x = 1980 + y - 12\sqrt {55y} $
Do $x, y$ nguyên nên $12\sqrt {55y} $ nguyên.
Ta biết rằng với $y$ nguyên thì$\sqrt {55y} $ hoặc là số nguyên hoặc là số vô tỉ.
Do đó $\sqrt {55y} $ là số nguyên, tức là $55y$ là số chính phương:  $11.5.y = {k^2}$.
Do đó: $y = 11.5.{a^2} = 55{a^2}$ với $a \in \mathbb{N}$
Tương tự: $x = $$55{b^2}$ với $b \in \mathbb{N}$
Thay vào (1):
        $\begin{array}
  a\sqrt {55}  + b\sqrt {55}  = 6\sqrt {55}   \\
\Leftrightarrow a + b = 6  \\
\end{array} $
Giả sử $y \leqslant x$ thì $a \leqslant b$. Ta có:
$(a,b)=(0,6),(1,5),(2,4),(3,3)$
Nên $(x,y)=(0,1980),(55,1375),(220,880),(495,495)$
Có 7 đáp số: $(0 ; 1980), (1980 ; 0), (55 ; 1375), (1375 ; 55), (220 ; 880), (880 ; 220),  (495 ; 495)$

4. Hệ phương trình nghiệm nguyên
Ví dụ 9:

Tìm các nghiệm nguyên của hệ phương trình:
               $\left\{ \begin{array}
  x + y + z = 3  \\
  {x^3} + {y^3} + {z^3} = 3  \\
\end{array}  \right.$
Giải:
Ta có hằng đẳng thức:
${(x + y + z)^3} - ({x^3} + {y^3} + {z^3}) = 3(x + y)(y + z)(z + x)$
Nên : $27 - 3 = 3(x + y)(y + z)(z + x)$
     $ \Leftrightarrow 8 = (x + y)(y + z)(x + z)$
Đặt $x + y = c, y + z = a, z + x = b.$
Ta có: $abc = 8$ $ \Rightarrow a,b,c \in \{  \pm 1, \pm 2, \pm 4, \pm 8\} $
Giả sử $x \leqslant y \leqslant z$ thì $a \geqslant b \geqslant c$.
Ta có: $a + b + c = 2(x + y + z) = 6$ nên $a \geqslant 2$
Với $a = 2$ ta có $\left\{ \begin{array}
b + c = 4  \\
bc = 4  \\
\end{array}  \right.$
Suy ra: $b = c = 2$
Ta được: $x = y = z = 1$
Với $a = 4$ ta có $\left\{ \begin{array}
b + c = 2  \\
bc = 2  \\
\end{array}  \right.$
Không có nghiệm nguyên.
Với $a = 8$ ta có $\left\{ \begin{array}
b + c =  - 2  \\
bc = 1  \\
\end{array}  \right.$
Suy ra: $b = c = -1$
Ta được: $x = y = 4; z = - 5$
Đáp số: $(1 ; 1 ; 1), (4 ; 4 ;  -5), (4 ; - 5 ; 4), (-5 ; 4 ; 4)$

5. Điều kiện để phương trình có nghiệm nguyên
Ví dụ 10:

Tìm các số thực $a$ để các nghiệm của phương trình sau đếu là số nguyên:
                      ${x^2} - ax + (a + 2) = 0$                   (1)
Giải:
Gọi ${x_1},{x_2}$ là nghiệm nguyên của (1). Theo định lý Viete:
                 $\left\{ \begin{array}
  {x_1} + {x_2} = a  \\
  {x_1}{x_2} = a + 2  \\
\end{array}  \right.$
Do đó:
$\begin{array}
  {x_1}{x_2} - ({x_1} + {x_2}) = 2  \\
   \Leftrightarrow {x_1}({x_2} - 1) - ({x_2} - 1) = 3  \\
   \Leftrightarrow ({x_1} - 1)({x_2} - 2) = 3  \\
\end{array} $
${x_1} - 1$ và ${x_2} - 2$ là ước của 3. Giả sử ${x_1} \geqslant {x_2}$ thì ${x_1} - 1$ $ \geqslant $ ${x_2} - 2$. Ta có hai trường hợp:
a)   $\left\{ \begin{array}
  {x_1} - 1 = 3  \\
  {x_2} - 1 = 1  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x_1} = 4  \\
  {x_2} = 2  \\
\end{array}  \right.$
Khi đó $a = 6$
b)   $\left\{ \begin{array}
  {x_1} - 1 =  - 1  \\
  {x_2} - 1 =  - 3  \\
\end{array}  \right. \Leftrightarrow \left\{ \begin{array}
  {x_1} = 0  \\
  {x_2} =  - 2  \\
\end{array}  \right.$
Khi đó $a = -2 $

Bài tập rèn luyện:
Bài 1:
   
Tìm các nghiệm nguyên dương của hệ phương trình :
                $\left\{ \begin{array}
{x^3} + {y^3} = {z^2} \\
x + y = z \\
\end{array}  \right. $  
Hướng dẫn:
Khử $z$ đưa đến phương trình : ${y^2} - (x + 1)y + {x^2} - x = 0$
Xem đây là phương trình bậc 2, biến $y$, từ điều kiện tồn tại nghiệm ta suy ra $x = 1$ hoặc $x = 2$
Đáp số: $(x; y; z) = (1; 2; 3) , (2; 1; 3) , (2; 2; 4)$

Bài 2:   
Tìm $x \in \mathbb{N}:\sqrt {x + 2\sqrt {x + ... + 2\sqrt {x + 2\sqrt {3x} } } }  = x$
Hướng dẫn:
Đáp số : $x = 0$ hoặc $x = 3$
Xét các trường hợp của x và đánh giá hai vế

Bài 3:   
Tìm tất cả các cặp số nguyên dương $(a, b)$ sao cho $\frac{{{a^2} - 2}}{{ab + 2}}$ là số nguyên
Hướng dẫn:
Từ giả thiết suy ra
        $2(a + b) \vdots (ab + 2) \Rightarrow 2(a + b) = k(ab + 2)$                      (1)
Từ (1) chứng tỏ $k = 1$ suy ra $a = 4, b = 3$
Đáp số : $(a; b) = (4; 3) $

Bài 4:   
Tìm các số tự nhiên $x$ sao cho: ${2^x} + {3^x} = 35$
Hướng dẫn:
Thế $x = 0, 1, 2, 3$ vào phương trình.
Với $x > 3$, phương trình vô nghiệm.
Đáp số:  $x = 3$

Thẻ

Lượt xem

10219
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376