|
Đặt $x-1=a,y-1=b,z-1=c,a,b,c>0$ Suy ra: $x=a+1,y=b+1,z=c+1$. Giả thiết trở thành: $(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\ge2(a+1)(b+1)(c+1)$ $\Leftrightarrow ab+bc+ca+2(a+b+c)+3\ge2(abc+ab+bc+ca+a+b+c+1)$ $\Leftrightarrow 2abc+ab+bc+ca\le1$ Đặt $t=\sqrt[3]{abc}$ Áp dụng BĐT Cauchy ta có: $1\ge2abc+ab+bc+ca$ $\ge2abc+3\sqrt[3]{(abc)^2}$ Hay $1\ge2t^3+3t^2\Leftrightarrow (2t-1)(t+1)^2\le0\Leftrightarrow t\le\frac{1}{2}$ Suy ra: $P=abc=t^3\le\frac{1}{8}$ Max$P=\frac{1}{8}\Leftrightarrow x=y=z=\frac{3}{2}$
|