Bài 1: Cho a,b,c>0 và $a^2+b^2+c^2=3$. CMR: $\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\geq3$
Bài 2: Cho a,b,c>0 và a+b+c=1. CMR: $\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ca}}+\frac{ab}{\sqrt{c+ab}}\leq \frac{1}{2}$
Bài 3: Cho a,b,c>0 và abc=1. CMR: a) $\frac{1}{a^3(b+c)}+\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)}\geq \frac{3}{2}$
b) $\frac{a^3}{(1+b)(1+c)}+\frac{b^3}{(1+c)(1+a)}+\frac{c^3}{(1+a)(1+b)}\geq \frac{3}{4}$
c) $\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\leq1$
Bài 4: Cho a,b,c>0 và abc=8. CMR: $\frac{1}{\sqrt{1+a^3}}+\frac{1}{\sqrt{1+b^3}}+\frac{1}{\sqrt{1+c^3}}\geq1$
Bài 5: Cho a,b,c là 3 cạnh của 1 tam giác. CMR: $\frac{(b+c-a)^4}{a(a+b-c)}+\frac{(c+a-b)^4}{b(b+c-a)}+\frac{(a+b-c)^4}{c(c+a-b)}\geq$$ab+bc+ca$
Bài 6: Cho a,b,c,d>0.CMR: $\frac{b(a+c)}{c(a+b)}+\frac{c(b+d)}{d(b+c)}+\frac{d(a+c)}{a(c+d)}+\frac{a(b+d)}{b(d+a)}\geq4$
Bài 3b là bài IMO shortlist 1998 lên mạng mà tìm.3a là IMO 1995,3c là IMO shortlist 1996 –  WhjteShadow 04-11-14 08:34 PM
e lên chia thành nhiều câu hỏi đăng mục hỏi đáp nhé ! để tiện cho các Admin giải bài. –  Đức Vỹ 04-11-14 08:25 PM
Bài 3c.

Ta có: $a^5+b^5=(a+b)(a^4-a^3b+a^2b^2-ab^3+b^4)$
$=(a+b)[a^2b^2+a^3(a-b)-b^3(a-b)]$
$=(a+b)[a^2b^2+(a-b)(a^3-b^3)]$
$=(a+b)[a^2b^2+(a-b)^2(a^2+ab+b^2)]\geq (a+b)a^2b^2$
Tương tự: $b^5+c^5\geq (b+c)b^2c^2;c^5+a^5\geq (c+1)c^2a^2$
Từ đó suy ra: $\sum\frac{ab}{a^5+b^5+ab}\leq \sum\frac{ab}{a^2b^2(a+b)+ab}=\sum\frac{1}{ab(a+b)+1}\leq \sum\frac{1}{ab(a+b+c)}=\sum\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1$ (đpcm)
Bài 3b.
Ta có: $\sum \frac{a^3}{(1+b)(1+c)}=a^4+a^3\geq  \frac{3}{4}(a+1)(b+1)(c+1)$

Ta phải chứng minh BĐT sau:
$\sum (a^4+a^3)\geq \frac{1}{4}\sum(a+1)^3$
Xét hàm số $f(t)=t^4+t^3-\frac{1}{4}(t+1)^3$
$g(t)=(t+1)(4t^2+3t+1)$ thì $f(t)=\frac{1}{4}(t-1).g(t)$
Nhận thấy $g(t)$ tăng trong khoảng $(0;+\infty )$ và $g(t)>0,\forall t>0$
Do đó: $\sum(a^4+a^3)-\frac{1}{4}\sum(a+a)^3=\sum f(a)=\frac{1}{4}\sum(a-1).g(a)$
Không mất tính tổng quát ta giả sử:
$a\geq b\geq c$ thì $g(a)\geq g(b)\geq g(c)>0$
Vì $abc=1$ nên ta có: $a\geq 1,c\leq 1$
Từ đó: $(a-1)g(a)\geq (a-1)g(b)$
$(c-1)g(b)\leq (c-1)g(c)$
Nên ta có: $\frac{1}{4}\sum(a-1)g(a)\geq \frac{1}{4}g(b)\sum(a-1)=\frac{1}{4}g(b)\sum a-\frac{3}{4}g(b)\geq \frac{3}{4}(\sqrt[3]{abc}-1).g(b)=0$
Dấu = xảy ra $\Leftrightarrow a=b=c=1$. Từ đó $\Rightarrow đpcm$
bài này không cần xét hàm đâu dài và phức tạp... –  WhjteShadow 04-11-14 09:12 PM
Bài 4:
$\frac{1}{\sqrt[3]{1+a^3}}=\frac{1}{\sqrt[3]{(1+a)(1-a+a^2)}}\geq \frac{2}{2+a^2} $(AM-GM 2 số)
Tương tự thì có $\sum\frac{1}{\sqrt[3]{1+a^3}}\geq \sum \frac{2}{2+a^2}$
Bất đẳng thức quy về CM:$\frac{2}{2+a^2}+\frac{2}{2+b^2}+\frac{2}{c^2+2}\geq1$
Biến đổi tương đương(quy đồng rút gọn) thì bđt cần cm có dạng 
$8+2(a^2+b^2+c^2)\geq \frac{1}{2}(abc)^2\Leftrightarrow a^2+b^2+c^2\geq12$
Mà theo AM-GM thì $a^2+b^2+c^2\geq 3\sqrt[3]{a^2b^2c^2}=12$
Bài 2:
$\sqrt{a+bc}=\sqrt{a(a+b+c)+bc}=\sqrt{(a+b)(a+c)}$(Do a+b+c=1)
$\frac{bc}{\sqrt{(a+b)(a+c)}}\leq \frac{bc}{2}(\frac{1}{a+b}+\frac{1}{a+c})(AM-GM 2 số)$
Tương tự rồi cộng lại thì có:$B\leq \frac{bc}{2(a+b)}+\frac{bc}{2(a+c)}+\frac{ca}{2(b+c)}+\frac{ca}{2(b+a)}+\frac{ab}{2(c+a)}+\frac{ab}{2(c+b)}=\frac{a+b+c}{2}=\frac{1}{2}$
Câu 1:
Bình phương lên bất đẳng thức cần CM có dạng :
$\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2(a^2+b^2+c^2)\geq 9=3(a^2+b^2+c^2)$
$\Leftrightarrow \sum\frac{a^2b^2}{c^2} \geq a^2+b^2+c^2$
Ta có các đánh giá sau $\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\geq 2b^2,... $ làm tương tự rồi cộng lại có đpcm

Bài 6:
HD:Sử dụng bất đẳng thức $ab\leq \frac{(a+b)^2}{4}$.Dấu bằng xảy ra khi $a=c>0,b=d>0$
bạn làm rõ giúp mình bài 4 luôn dc ko sao mình biến đổi ra khác bạn –  Optimus Prime 06-11-14 09:53 PM
có mai nộp bài rồi –  Optimus Prime 06-11-14 09:51 PM
có cần gấp ko nều không để mai về làm cho –  WhjteShadow 06-11-14 09:27 PM
bạn chỉ rõ áp dụng cho cái nào dc ko sao mình làm ko dc –  Optimus Prime 06-11-14 09:15 PM
sao cau 6 minh lam ko ra nho ban giai chi tiet cai –  thuytailvt 05-11-14 04:03 PM
tks nguyên nhiều nhé –  Optimus Prime 04-11-14 09:32 PM
Bài 6:
Vẫn sử dụng AM-GM ta có:
$\frac{(b+c-a)^2}{a(a+b-c}+a(a+b-c)\geq 2(b+c-a)^2=2(a^2+b^2+c^2)+4(bc-ca-ab)$
$\frac{(c+a-b)^2}{b(b+c-a)}+b(b+c-a)\geq 2(c+a-b)^2=2(a^2+b^2+c^2)+4(ca-ab-bc)$
$\frac{(a+b-c)^4}{c(a+c-b)}+c(a+c-b)\geq 2(a+b-c)^2=2(a^2+b^2+c^2)+4(ab-bc-ac)$
Cộng tất cả lại thì được và bớt đi phần thêm vào:
$M\geq 5(a^2+b^2+c^2)-4(ab+bc+ac)$.Cần CM $5(\sum a^2)-4(\sum ab) \geq \sum ab$
Chuyển vế ta có $5(a^2+b^2+c^2)\geq 5(ab+bc+ac)$ đây là bđt quen thuộc

viết đầy dủ la 5(a^2 b^2 c^2)>=5(ab bc ac) viết kí hiệu kia là viết tăt nghĩa là tổng ở đây là tổng đối xứng –  WhjteShadow 05-11-14 02:37 PM
bạn ơi cái đoạn 5a^2>5ab cm thế nào vậy bạn –  Optimus Prime 05-11-14 02:25 PM

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376