P=∑√ab+c+√2(a2+b2+c2)ab+bc+ca=∑√2a22a(b+c)+√2(a2+b2+c2)ab+bc+ca≥2√2.∑a2a+b+c+√2(a2+b2+c2)ab+bc+ca≥2√2.(a+b+c)22(a2+b2+c2+ab+bc+ca)+√2(a2+b2+c2)ab+bc+ca=√21−ab+bc+ca(a+b+c)2+√2.(a+b+c)2ab+bc+ca−4
Đặt t=(a+b+c)2ab+bc+ca, ta có: t∈[3;+∞)
P=√21−1t+√2t−4=t√2t−1+√2t−4
Khảo sát hàm số f(t)=t√2t−1+√2t−4 trên [3;+∞), ta có: f(t)≥5√22