4
phiếu
1đáp án
1K lượt xem

Đề lạ, cần câu cực trị

Cho a,b,c dương và $a^2+b^2+bc=c^2$.Tìm GTNN:$P=a^2-2a+\frac{a}{b+c}+\frac{b}{c+a}+\frac{4c(1-\sqrt{ab+1})+abc}{b+c}$
5
phiếu
1đáp án
1K lượt xem

cho a,b,c là các số thực dương. chứng minh rằng: $\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\geq 3+\frac{(a-b)^2+(b-c)^2+(c-a)^2}{(a+b+c)^2}$

cho a,b,c là các số thực dương. chứng minh rằng:$\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\geq 3+\frac{(a-b)^2+(b-c)^2+(c-a)^2}{(a+b+c)^2}$
7
phiếu
1đáp án
1K lượt xem

Cho x,y,z>0 thỏa mãn: $xyz\geq 1; z\leq 1$. Tìm GTNN: $P=\frac{x}{1+y}+\frac{y}{1+x}+\frac{4-z^3}{3+3xy}$

Cho x,y,z>0 thỏa mãn: $xyz\geq 1; z\leq 1$. Tìm GTNN:$P=\frac{x}{1+y}+\frac{y}{1+x}+\frac{4-z^3}{3+3xy}$
5
phiếu
1đáp án
1K lượt xem

cho $x,y,z$ là các số thực dương thỏa mãn hệ thức $xyz=1$ tìm giá trị nhỏ nhất của $P=\frac{x^3+y^3+z^3}{2x+3y+z+\sqrt{xy}+3\sqrt{yz}+5\sqrt{zx}}$

cho $x,y,z$ là các số thực dương thỏa mãn hệ thức $xyz=1$tìm giá trị nhỏ nhất của $P=\frac{x^3+y^3+z^3}{2x+3y+z+\sqrt{xy}+3\sqrt{yz}+5\sqrt{zx}}$
2
phiếu
1đáp án
3K lượt xem

cho $ a,b,c $ là độ dài ba cạnh của một tam giác không nhọn. CMR $(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\geq 10$

cho $ a,b,c $ là độ dài ba cạnh của một tam giác không nhọn. CMR$(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\geq 10$
8
phiếu
1đáp án
1K lượt xem

cho các số dương $ab+bc+ca=3$
chứng minh rằng $\frac{1}{1+a^2(b+c)}+\frac{1}{1+b^2(c+a)}+\frac{1}{1+c^2(a+b)}\leq \frac{1}{abc}$

cho các số dương $ab+bc+ca=3$<div>chứng minh rằng $\frac{1}{1+a^2(b+c)}+\frac{1}{1+b^2(c+a)}+\frac{1}{1+c^2(a+b)}\leq \frac{1}{abc}$
9
phiếu
1đáp án
1K lượt xem

lm jup vs

tìm T lớn nhất sao cho$ \forall a;b;c>0 ;$ thoả mãn abc=1 thì bất đẳng thức sau luôn đúng $\frac{a+b}{b(a+1)}$+$\frac{b+c}{c(b+1)}$+$\frac{c+a}{a(c+1)}\geq T$
8
phiếu
1đáp án
1K lượt xem

Kelvin:"Khó khăn sẽ không là gì với bạn, nếu bạn có quyết tâm vượt qua."

Cho $a_{1},a_{2},a_{3},...,a_{2016}$ là các số thực dương . Kí hiệu : $T=a_{1}+a_{2}+...+a_{2016};T_{k}=T-a_{k}$(là tổng khuyết...
4
phiếu
1đáp án
1K lượt xem

Bất đẳng thức

Cho a,b,c là các số thực dương tuỳ ý. CMR:$(a+b+c)(ab+bc+ca)\leq \frac{9}{8}(a+b)(b+c)(c+a)$
7
phiếu
1đáp án
1K lượt xem

mọi người giúp mk nha,THANK

$\frac{1}{1+\sqrt{1+x}}$+$\frac{1}{1+\sqrt{1-3x}}$$\geq$$\frac{4}{x+4}$
4
phiếu
1đáp án
1K lượt xem

giúp mk nha, mk thank trước

$\sqrt{x+1}$$\geq$$\frac{x^{2}-x-2\sqrt[3]{2x+1}}{\sqrt[3]{2x+1}-3}$
11
phiếu
7đáp án
5K lượt xem

Vui tí nha

Điền thêm 3 số tiếp theo vào dãy sau:$11;19;29;41;55;71;89$
4
phiếu
0đáp án
470 lượt xem

cả nhà ơi giải giúp tớ với

cho $a^2+b^2+c^2=3$.chứng minh:$\frac{1}{3-ab} +\frac{1}{3-bc}+\frac{1}{3-ca} \leq \frac{3}{2}$
17
phiếu
1đáp án
2K lượt xem

tớ cũng biết chế bđt ;))

cho 5 số thực dương thỏa mãn a+b+c+d+e=5. tìm GTNN của biểu thức$P=(\frac{a}{a+2})^{3}+(\frac{b}{b+2})^{3}+(\frac{c}{c+2})^{3}+(\frac{d}{d+2})^{3}+(\frac{e}{e+2})^{3}$
7
phiếu
1đáp án
1K lượt xem

cho các số dương $ab+bc+ca=3$ chứng minh rằng $\frac{1}{1+a^2(b+c)}+\frac{1}{1+b^2(c+a)}+\frac{1}{1+c^2(a+b)}\leq \frac{1}{abc}$

cho các số dương $ab+bc+ca=3$chứng minh rằng $\frac{1}{1+a^2(b+c)}+\frac{1}{1+b^2(c+a)}+\frac{1}{1+c^2(a+b)}\leq \frac{1}{abc}$
11
phiếu
1đáp án
2K lượt xem

S.O.S :D Thông báo : Tìm avt

Chứng minh bất đẳng thức sau với mọi $a,b,c$ không âm : $\frac{a^{3}}{2a^{2}-ab+2b^{2}}+\frac{b^{3}}{2b^{2}-bc+2c^{2}}+\frac{c^{3}}{2c^{2}-ca+2a^{2}} \geq \frac{a+b+c}{3}$
10
phiếu
1đáp án
2K lượt xem

$\color{green}{\mathbb F = 4.\sqrt[3]{\frac{2a}{7a^2+3b^2+6c}}+4.\sqrt[3]{\frac{2b}{7b^2+3c^2+6a}}+\frac{abc^2}{a+b+c}}$

Cho $a,b,c$ là các số thực dương thỏa mãn $abc=1.$ Tìm giá trị lớn nhất của biểu thức: $\mathbb F = 4.\sqrt[3]{\frac{2a}{7a^2+3b^2+6c}}+4.\sqrt[3]{\frac{2b}{7b^2+3c^2+6a}}+\frac{abc^2}{a+b+c}$
16
phiếu
1đáp án
2K lượt xem

Câu cuối đề thi thử THPT Quốc Gia lần I ( Nghệ An)

Cho $x,y$ là hai số thực dương thỏa mãn : $2x+3y \leq 7$ . Tìm giá trị nhỏ nhất của biểu thức : ...
10
phiếu
0đáp án
1K lượt xem

Cho 3 số thực $x,y,z \in \left[ {1;4} \right]$ và thỏa mãn $x+y+z=6$ . Tìm Min : $T=\frac{z}{8(x^{2}+y^{2})}+\frac{x^{2}+y^{2}-1}{xyz}$

Cho 3 số thực $x,y,z \in \left[ {1;4} \right]$ và thỏa mãn $x+y+z=6$ . Tìm Min : $T=\frac{z}{8(x^{2}+y^{2})}+\frac{x^{2}+y^{2}-1}{xyz}$
7
phiếu
1đáp án
2K lượt xem

bất đẳng thức hay nè, các bạn cùng làm nha

cho a,b,c là số thực dương thỏa mãn: a+b+c=3. chứng minh rằng:$\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\geq \frac{3}{2}$
9
phiếu
1đáp án
3K lượt xem

Chứng minh: $(x-1)^{3} +(y-1)^{3}+(z-1)^{3} \geq \frac{-3}{4}$

đề thi thử vào 10Cho $x, y, z$ là các số thực dương thỏa mãn $x+y+z=3$. Chứng minh:$(x-1)^{3} +(y-1)^{3}+(z-1)^{3} \geq \frac{-3}{4}$
3
phiếu
1đáp án
1K lượt xem

đây là bài tập BĐT hay, hãy giúp mình sớm nha

cho $x, y, z$ dương thỏa mãn: $x+y+z=1$. Chứng minh rằng:$\frac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\geq 1$
4
phiếu
2đáp án
1K lượt xem

mình đang cần gấp hãy giải giúp mình nha

Cho $x, y$ không âm: $x+y \leq 6$Chứng minh rằng: $-64 \leq x^{2}y(4-x-y) \leq 4$
5
phiếu
1đáp án
2K lượt xem

Lâu rồi ms gặp 1 BĐT hey!!

C/m​b​​a​2​​​​+​c​​b​2​​​​+​a​​c​2​​​​≥3(a​2​​+b​2​​+c​2​​)
3
phiếu
2đáp án
1K lượt xem

BĐT cơ sở

cho a,b>0.CMR:a5+b5a2+b23&#x2265;a+b2" role="presentation" style="display: inline-block; line-height: 0; font-size: 30.42px; word-wrap:...
11
phiếu
2đáp án
2K lượt xem

bất đẳng thức nha!!!

cho $a,b,c>0$ thỏa mãn $2006ac+ab+bc=2006$ . Tìm $Max$: P=$\frac{2}{a^{2}+1} -\frac{2b^{2}}{b^{2}+2006^{2}} +\frac{3}{c^{2}+1}$
2
phiếu
0đáp án
630 lượt xem

Tìm GTLN,GTNN

$Tìm max: x^{2}y+2xy-4x+y=0$
1
phiếu
1đáp án
1K lượt xem

Tìm GTLN,GTNN

$Tìm min B=(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}).\frac{4\sqrt{x}}{3} với x\geq 0$
3
phiếu
1đáp án
1K lượt xem

CM

$\sqrt{x^{2}+xy+y^{2}}+\sqrt{x^{2}+xz+z^{2}}\geq \sqrt{y^{2}+yz+z^{2}} (\forall x, y, z)$
6
phiếu
3đáp án
2K lượt xem

bài này mình cần nhiều cách giải. giúp với

cho $4(a+b+c)=3abc$chứng minh $\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\geq \frac{3}{8}$
11
phiếu
1đáp án
1K lượt xem

__ The End __

Cho $a,b,c$ là các số dương có tổng bằng 3 . CM BĐT sau : $\frac{1}{4a^{2}+b^{2}+c^{2}} + \frac{1}{a^{2}+4b^{2}+c^{2}}+\frac{1}{a^{2}+b^{2}+4c^{2}}\leq \frac{1}{2}$
7
phiếu
1đáp án
1K lượt xem

Bất đẳng thức khó đây

Cho $a,b,c$ là các số thực không âm và $a^2+b^2+c^2=3$. Chứng minh rằng: $\frac{1}{3-ab}+\frac{1}{3-bc}+\frac{1}{3-ac}\leq \frac{3}{2}$
4
phiếu
1đáp án
1K lượt xem

BĐT

cho các số thực a;b thỏa mãn: $a^2+b^2\leq 1$ CMR:$(ac+bd-1)^2\geq (a^2+b^2-1)(c^2+d^2-1)$với mọi c;d
4
phiếu
1đáp án
1K lượt xem

giúp hộ ạ

Chứng minh các số thực dương $a,b,c$ dương có tổng bằng $3$ thì:$\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\geq 3.$
10
phiếu
1đáp án
1K lượt xem

Bất đẳng thức

Chứng minh với $a,b,c\geq 0$.$\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\geq \frac{3}{2(ab+bc+ca)}$.
11
phiếu
1đáp án
1K lượt xem

Bất đẳng thức :D Khó lắm đừng làm :))

Với $a,b,c\geq 0$.CMR:$\frac{ab}{a^2+b^2+3c^2}+\frac{bc}{b^2+c^2+3a^2}+\frac{ca}{c^2+a^2+3b^2}\leq \frac{3}{5}$
9
phiếu
2đáp án
1K lượt xem

Khát danh vọng

Với $a,b,c>0$.Chứng minh rằng:$\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{b+c}}+\frac{c}{\sqrt{c+a}}\geq \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{2}}$
6
phiếu
1đáp án
1K lượt xem

Gửi admin

Cho mình hỏi cái :Mấy ngày hôm nay rồi, mọi người vote cho mình nhưng sao mình ko đc tăng danh vọng, Xin admin xem lại cho mình cái
7
phiếu
1đáp án
1K lượt xem

BĐT

Cho $a;b;c>0$.CMR:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{a+b}{b+c}+\frac{b+c}{a+b}+1$
3
phiếu
1đáp án
1K lượt xem

Mọi người có thể giúp mình được không, cảm ơn nhiều

Chứng minh với mọi $x>1$có: $x+\frac{4x^3}{(x-1)(x+1)^3}>3$.
6
phiếu
1đáp án
1K lượt xem

Cho $1 \le a \le b \le c \le 4$. Tìm GTLN của biểu thức :

$$P=(a+b+c)( \frac 1a + \frac 1b + \frac 1c)$$
8
phiếu
2đáp án
1K lượt xem

BDT!!!!!!

cho a, b>0\begin{cases}a-b=a^{3}+b^{3} \\ CM:a^{2}+b^{2} <1\end{cases}
9
phiếu
2đáp án
2K lượt xem

BĐT

Cho $a;b;c>0;abc=1$.CMR:$\frac{a}{2a^{3}+1}+\frac{b}{2b^{3}+1}+\frac{c}{2c^{3}+1}\leq 1$
4
phiếu
0đáp án
453 lượt xem

help !!!!!!!!!!

\begin{cases}a,b,c>0 \\ CM:a\sqrt{8b^{2}+c}+b\sqrt{8c^{2}+a}+c\sqrt{8a^{2}+b}\geq (a+b+c)^{2} \end{cases}
6
phiếu
0đáp án
423 lượt xem

giúp tớ

{x+y+z=3CM:x1+y+yz−−−−−√+y1+z+zx−−−−−−√+z1+x+xy−−−−−−√≥3√biết x,y,z>0
0
phiếu
0đáp án
0 lượt xem

:))))))))

a, b, c>0\begin{cases}x+y+z=3 \\ CM:\sqrt{\frac{x}{1+y+yz}}+\sqrt{\frac{y}{1+z+zx}}+\sqrt{\frac{z}{1+x+xy}}\geq\sqrt{3} \end{cases}
6
phiếu
2đáp án
1K lượt xem

bất đẳng thức nha!!!

cho $x,y,z >0$ thỏa mãn $xyz=1$ .tìm $max$ $P=\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz} +\frac{\sqrt{z}}{1+z+zx}$

Trang trước1...1213141516...45Trang sau 153050mỗi trang
Chat chit và chém gió
  • hoangsonhoanghop: anh en 2/2/2021 9:52:18 PM
  • tranhoangha1460: alo 2/4/2021 9:42:21 AM
  • tranhoangha1460: chào các cháu 2/4/2021 9:42:24 AM
  • tranhoangha1460: chú rất thích lồn chim cu bím mong các cháu gửi ảnh 2/4/2021 9:43:20 AM
  • lehuong01032009: hi 2/20/2021 10:10:22 AM
  • chuyentt123456: hi 2/28/2021 9:20:49 PM
  • ngamyhacam242: hi 3/12/2021 3:28:49 PM
  • ltct1512: hê lô 3/13/2021 9:25:49 PM
  • duolingo: 7nwinking 3/23/2021 7:46:22 PM
  • duolingo: no_talking 3/23/2021 7:46:51 PM
  • duolingo: u 3/23/2021 7:46:57 PM
  • duolingo: y 3/23/2021 7:47:13 PM
  • duolingo: j 3/23/2021 7:47:19 PM
  • duolingo: n 3/23/2021 7:47:27 PM
  • duolingo: v 3/23/2021 7:47:37 PM
  • duolingo: n 3/23/2021 7:47:44 PM
  • duolingo: njjhh 3/23/2021 7:47:50 PM
  • duolingo: iggg 3/23/2021 7:48:02 PM
  • thptkk: cc 3/24/2021 11:02:09 PM
  • thptkk: ai hoc lop 10 ha noi ko 3/24/2021 11:02:35 PM
  • luutronghieu2005: Hí ae 5/12/2021 9:38:20 AM
  • myanhth.vnuong: hế lô 5/30/2021 8:20:13 AM
  • myanhth.vnuong: wave 5/30/2021 8:26:44 AM
  • danh2212005: hi 6/6/2021 11:29:08 PM
  • danh2212005: lâu ae chưa nhắn j hết à 6/6/2021 11:34:33 PM
  • doankhacphong: đang nghỉ dịch 6/16/2021 10:14:12 PM
  • doankhacphong: hello.. 6/16/2021 10:14:31 PM
  • vutienmanhthuongdinh21: whew 6/18/2021 8:08:22 AM
  • thaole240407: kiss hí 6/24/2021 9:23:30 PM
  • thaole240407: . 6/24/2021 9:27:39 PM
  • thaole240407: . 6/24/2021 9:27:45 PM
  • lanntp.c3cd: mọi nguoi oi, cho mìn hỏi sao ko sao chép bài giả về được nhỉ? 7/3/2021 9:11:17 AM
  • lanntp.c3cd: ko coppy bài giải về đuwọc? 7/3/2021 9:11:42 AM
  • Phương ^.^: 2 mn 7/21/2021 8:47:14 AM
  • tanghung05nt: solo ys ko mấy thag loz 8/1/2021 10:36:45 AM
  • longlagiadinh: kkkkk 8/6/2021 7:59:48 AM
  • longlagiadinh: rolling_on_the_floor 8/6/2021 8:15:19 AM
  • longlagiadinh: not_worthy 8/6/2021 8:15:43 AM
  • lynh7265: mồm xinh mồm xinh 8/24/2021 1:33:10 PM
  • lynh7265: angel 8/24/2021 1:33:31 PM
  • anhmisa448: lô mn. tui là ng mới 9/15/2021 8:12:18 AM
  • anhmisa448: có ai ko? 9/15/2021 8:13:06 AM
  • truonguyennhik6: Hi 9/27/2021 8:58:47 PM
  • truonguyennhik6: Hi 9/27/2021 8:58:50 PM
  • truonguyennhik6: Ai acp fb tui đi 9/27/2021 8:59:21 PM
  • truonguyennhik6: https://www.facebook.com/profile.php?id=100061932980491 9/27/2021 9:04:42 PM
  • daothithomthoi: Giúp mình bài này với. Lớp 10 nhé😘😘 10/23/2021 5:06:43 AM
  • thanhthuy1234emezi: bài này ns là hình bên mà ko thấy hình là như nào ạ 10/27/2021 8:37:30 PM
  • phong07032006: alo 11/1/2021 7:35:33 PM
  • phong07032006: page sập rồi à 11/1/2021 7:35:41 PM
  • phong07032006: alo 11/1/2021 7:35:46 PM
  • Dương Hoàng Phươn: alo 11/9/2021 4:34:43 PM
  • Dương Hoàng Phươn: Hê nhô 11/9/2021 4:34:48 PM
  • pdc998800: :0 11/17/2021 9:13:50 PM
  • khoicorn2005: alo alo 11/19/2021 3:47:57 PM
  • huanhutbang: he lỏ???;>> 11/20/2021 5:42:16 AM
  • dongtonam176: hi 12/5/2021 4:40:17 PM
  • khoicorn2005: page giờ buồn quá 12/10/2021 3:05:25 PM
  • khoicorn2005: hello 12/10/2021 3:06:20 PM
  • xuannqsr: Hi 12/13/2021 1:49:06 PM
  • xuannqsr: Mình mới vào ạ 12/13/2021 1:49:16 PM
  • xuannqsr: Ai vô google baassm chữ lazi.vn đi 12/13/2021 1:49:39 PM
  • xuannqsr: chỗ đó vui hơn 12/13/2021 1:49:44 PM
  • xuannqsr: cũng học luôn á 12/13/2021 1:49:48 PM
  • xuannqsr: có thể chattt 12/13/2021 1:49:53 PM
  • xuannqsr: kết bạn đc lunnn 12/13/2021 1:50:01 PM
  • xuannqsr: Còn ai hok dạ 12/13/2021 1:51:27 PM
  • phatdinh: hi mn 3/21/2022 8:31:29 PM
  • phatdinh: yawn 3/21/2022 8:32:26 PM
  • phannhatanh53: hi 3/22/2022 10:25:48 PM
  • khoicorn2005: hellooooooo 3/27/2022 3:27:06 PM
  • khoicorn2005: love_struck 3/27/2022 3:27:38 PM
  • aiy78834: 2 3/31/2022 11:12:21 PM
  • aiy78834: big_hug 3/31/2022 11:12:33 PM
  • dt915702: hiii 4/2/2022 8:37:09 PM
  • dt915702: hmmmm 4/2/2022 8:37:14 PM
  • ngocmai220653: aloalo 7/13/2022 3:29:06 PM
  • ngocmai220653: lololo 7/13/2022 3:29:26 PM
  • ngocmai220653: soooooooooooooooooooooooooooooos 7/13/2022 3:29:37 PM
  • ngocmai220653: ---...--- ---...--- 7/13/2022 3:29:55 PM
  • ngocmai220653: ét o ét 7/13/2022 3:30:02 PM
  • kimchuc2006i: lí 11 8/23/2022 9:28:58 PM
  • kimchuc2006i: tìm tài lieuj hoc lí lớp 11 ở đâu vậy mọi người 8/23/2022 9:29:38 PM
  • Ngothikhuyen886: moị người ơi 11/1/2022 9:40:44 PM
  • Ngothikhuyen886: giúp mik đc khum 11/1/2022 9:40:55 PM
  • Ngothikhuyen886: cho đoạn mạch như hình vẽ, dây nối A kể có điện trở k đáng kể, V rất lớn, 2 đầu đoạn mạch nối với hiệu điện thế U=2V / a, chỉnh biến trở để vôn kế chỉ 4A . Khi đó cường độ dòng điện qua A kế 5A. Tính điện trở của biến trở khi đó ? / b,phải chỉnh biến trở có điện trở bao nhiêu để có A chỉ 3A? 11/1/2022 9:41:58 PM
  • Ngothikhuyen886: đây ạ 11/1/2022 9:42:03 PM
  • Ngothikhuyen886: giúp mik với 11/1/2022 9:42:09 PM
  • Ngothikhuyen886: lớp 9 11/1/2022 9:42:11 PM
  • Ngothikhuyen886: straight_face 11/1/2022 9:44:19 PM
  • truongthithanhnhan99: hí ae 11/10/2022 7:32:16 AM
  • vanhieu21061979: hello 11/14/2022 7:58:01 PM
  • vanhieu21061979: anh em ơi 11/14/2022 7:58:18 PM
  • loll: giúp em sẽ gầy vsrolling_on_the_floor 11/23/2022 2:58:58 PM
  • loll: onichan 11/23/2022 3:00:55 PM
  • loll: yamatebroken_heart 11/23/2022 3:01:26 PM
  • loll: =00 11/23/2022 3:01:32 PM
  • loll: rolling_on_the_floor 11/23/2022 3:01:35 PM
  • Hiusegay: Hê lô kitty 11/23/2022 8:46:07 PM
  • kimyoungran227: chicken 1/25/2023 8:14:22 PM
Đăng nhập để chém gió cùng mọi người
  • nguyenphuc423
  • Xusint
  • Long Nd
  • tiendat.tran.79
  • vansang.nguyen96
  • nhutuyet12t7.1995
  • taquochung.hus
  • builananh1998
  • badingood_97
  • nokia1402
  • HọcTạiNhà
  • happy_story_1997
  • matanh_31121994
  • hnguyentien
  • iloveu_physics_casino_fc_1999
  • an123456789tt
  • ntdragon9xhn
  • huongtrau_buffalow
  • ekira9x
  • chaicolovenobita
  • ngocanh7074
  • stubborngirl_99
  • quanvu456
  • moonnguyen2304
  • danganhtienbk55
  • thai.tne1968
  • chemgioboy5
  • hung15101997
  • huyentrang2828
  • minhnhatvo97
  • anhthong.1996
  • congchuatuyet_1310
  • gacon7771
  • kimberly.hrum
  • dienhoakhoinguyen
  • Gió!
  • m_internet001
  • my96thaibinh
  • tamnqn
  • phungthoiphong1999
  • dunglydtnt
  • thaoujbo11
  • viethungcamhung
  • smix84
  • smartboy_love_cutegirl
  • minhthanhit.com
  • hiephiep008
  • congthanglun4
  • smallhouse253
  • eragon291995
  • anhdai036
  • parkji99999
  • bồ công anh
  • qldd2014
  • nguyentham2107
  • minhdungnguyenle
  • soosu_98
  • pykunlt
  • nassytt
  • Ngâu
  • tart
  • huynhhthanhtu007
  • a2no144
  • nguyenvantoan140dinhdong
  • anh.sao.bang199x
  • tinhoccoso3a.2013
  • vuongthiquynhhuong
  • duey374
  • 9aqtkx
  • thanhhuong832003
  • geotherick
  • gaksital619
  • phuonghong0311
  • bjn249x
  • moc180596
  • canthuylinh
  • langvohue1234
  • tamcan152
  • kieule12345
  • hoangxu_mk
  • abcdw86
  • sand_wildflowers
  • phuongnganle2812
  • huyhieu10.11.1999
  • o0osuper13junioro0o
  • jackcoleman50
  • hjjj1602
  • darkhuyminh
  • klinh1999hn
  • toiyeuvietnam20012000
  • lechung20010
  • bestfriendloveminwoo
  • phamstars1203
  • vietthanhle93
  • vuminhtrung2302
  • duchuy828
  • nguyendinhtiendat1999
  • thiphuong0289
  • tiennguyen19101998
  • trongpro_75
  • Moon
  • nguyenduongnhuquynh
  • lamthanhhien18
  • nguyenthithanhhuyen1049
  • baobinhsl99
  • p3kupahm1310
  • colianna123456789
  • allmyloving97
  • william.david.kimgsley
  • Huỳnh Nguyễn Ngọc Lam
  • huynhthanhthao.98dn
  • zts.love
  • trinhngochuyen97
  • phwongtran
  • Yenmy_836
  • Dark
  • lequangdan1997
  • trantrungtho296
  • daxanh.bolide
  • kieuphuongthao252
  • Binsaito
  • lenam150920012807
  • Thỏ Kitty
  • kiwinguyn
  • kimbum_caoco
  • tieuyen
  • anhvu162015
  • nhattrieuvo
  • dangminh200320
  • ankhanh19052002
  • Raini0101
  • doimutrangdangyeu
  • SPKT
  • huong-huong
  • olala
  • thuylinhnguyenthi25
  • phuongthao2662000
  • Katherinehangnguyen
  • noivoi_visaothe
  • nguyenhoa2ctyd
  • boyphuly00
  • Cycycycy2000
  • Kibangha1999
  • myha03032000
  • ruachan123
  • ◄Mαnµcïαn►
  • aasdfghjklz2000
  • lhngan16
  • hunghunghang99
  • xunubaobinh2
  • nguyenhoa7071999
  • trantruc45
  • tuyetnhi.tran19
  • Phuonglan102000
  • phamtra2000
  • 15142239
  • thaodinh
  • taongoclinh19992000
  • chuhien9779
  • accluutru002
  • tranthunga494
  • pokemon2050theki
  • nguyenlinh2102000
  • nguyenduclap0229
  • duonglanphuong3
  • minnsoshii
  • Confusion
  • vanhuydk
  • vetmonhon
  • conmuangangqua05
  • huongly22092000
  • doanthithanhnhan2099
  • nguyen.song
  • anhtuanphysics
  • Thủy Tiên
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • tungduongqk
  • duongtan287
  • Shadaw Night
  • lovesomebody121
  • nguyenly.1915
  • Hoa Pun
  • Ánh Royal
  • ☼SunShine❤️
  • uyensky1908
  • thuhuongycbg228
  • holong110720
  • chauhp2412
  • luuvinh083
  • woodygxpham
  • huynhhohai
  • hoanglichvlmt
  • dungnguyen
  • ♪♪♪_๖ۣۜThanh♥๖ۣۜTùng_♪♪♪
  • Duong Van
  • languegework
  • Lê Huỳnh Cẩm Tú
  • ❄⊰๖ۣۜNgốc๖ۣۜ ⊱ ❄
  • edogawaconan7t
  • nguyenminhthu
  • Quốc Anh
  • DaP8
  • Vanus
  • Kim Thưởng
  • huongly987654321
  • dinhthimailan2000
  • shennongnguyen
  • khiemhtpy
  • rubingok02
  • Dưa Leo
  • duongngadp0314
  • Hoàng Lê
  • Half Heart
  • vananh2823
  • dotindat
  • hng009676
  • solider76 :3
  • quannguyenthd2
  • supersaiyan2506
  • huyhoangnguyen094
  • Tiểu Nhị Lang
  • truongduc312
  • bac1024578
  • Siuway190701
  • hinyd1003
  • holutu6
  • thuydung0200
  • nhu55baby.com
  • Thaolinhvu2k
  • abcxyaa
  • boyvip5454
  • nguyenthiminhtuong9a5
  • maita
  • thanhhient.215
  • hangha696
  • lmhthuyen
  • trangnguynphan
  • On Call
  • myolavander
  • minhnguyetquang0725
  • vitconxauxi1977
  • dominhhao10
  • nguyentuyen3620
  • tuonglamnk123
  • viconan01
  • aithuonghuy
  • Thanhtambn154
  • loc09051994
  • sathu5xx
  • trgiang071098
  • boy_kute_datrang
  • hoangthanhnam10
  • sonptts
  • lazybear13032000
  • nhanthangza
  • phamthuyquynh092001
  • zzzquangzzzthuzzz
  • duykien1120
  • Hardworkingmakeresults
  • lviet04
  • lemy16552
  • nlegolas111
  • hunganhqn123
  • Trantanphuc194
  • Đức Vỹ
  • maithidao533
  • nguyenbaoquynh.321
  • vananh.va388
  • quynhnguyen1352001
  • datphungvodoi
  • phamvy1234yh
  • phuonghong2072002
  • phucma1901.pm
  • nguyenhongvanhang
  • caodz2kpro
  • thanhlnhv
  • nguyetngudot
  • bhnmkqn2002
  • Phù thủy nhỏ
  • ngongan24122002
  • nhathung
  • Nhudiem369
  • vohonhanh
  • thienhuong26112002
  • Nquy1609
  • edotensei2002
  • phuongnamc3giarai
  • dtlengocbaotran
  • khanhhung4869
  • baanhle35
  • ngnhuquynh123
  • lingggngoc
  • phuocnhan992000
  • Minh Đoàn
  • vutthuylinh
  • Tuấn2k2
  • ngocchivatly0207
  • ndhfreljord
  • duyenngo0489
  • nguyen_ngan06122002
  • nguyennamphi39
  • ngatngat131
  • Nguyentrieu2233
  • snguyenhoang668
  • sangvu0504
  • ldtl2003
  • thaongan22091994
  • Ngocthuy060702
  • quyhuyen0401
  • lan27052003
  • maiuyen1823
  • laitridung2004
  • mehuyen09666
  • tranvantung13
  • truongdanthanh7
  • kimuyen243
  • linhlinh10082002
  • Anhhwiable
  • Cuongquang602
  • nickyfury0711
  • thaithuhanglhp77
  • nguyenbaloc919
  • congvanvu00
  • ngohongtrang186
  • nkd11356
  • dangminhnhut27032005
  • pn285376