|
sửa đổi
|
giúp với , cần gắp
|
|
|
giúp với , cần gắp 1) tìm số tự nhiên n để $n^{2018}+n^{2008}+1$ là số nguyên tố2) cho 3 số dương x,y,z thỏa mãn xyz=1.chứng minh rằng :$\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\leq 1$3) tam giác ABC nhọn, đường cao AD, gọi H là trực tâm . Biêt BC=a. Tìm giá trị lớn nhất của AD.HD
giúp với , cần gắp 1) tìm số tự nhiên n để $n^{2018}+n^{2008}+1$ là số nguyên tố2) cho 3 số dương x,y,z thỏa mãn xyz=1.chứng minh rằng :$ P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\leq 1$3) tam giác ABC nhọn, đường cao AD, gọi H là trực tâm . Biêt BC=a. Tìm giá trị lớn nhất của AD.HD
|
|
|
giải đáp
|
giúp với , cần gắp
|
|
|
Bài 2: Ta có bđt$:x^3+y^3\geq xy(x+y)\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y)+xyz}=\frac{1}{xy(x+y+z)}$ Tương tự nv$:\Rightarrow P\leq \frac{1}{(x+y+z)}(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})=\frac{(x+y+z)}{(x+y+z).xyz}=1$
|
|
|
được thưởng
|
Đăng nhập hàng ngày 28/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 27/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 26/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 25/12/2017
|
|
|
|
|
|
giải đáp
|
giúp với , cần gắp
|
|
|
Bài 3:lấy vế phải trừ vế trái ta đc: $\frac{(a-1)^3(a+1)(2a^2+a+2)}{a^3}\geq (\forall a\geq 1)$
|
|
|
được thưởng
|
Đăng nhập hàng ngày 24/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 23/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 22/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 21/12/2017
|
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 20/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 19/12/2017
|
|
|
|
|
|
được thưởng
|
Đăng nhập hàng ngày 18/12/2017
|
|
|
|
|